AUTOMORPHISMES DU GROUPE SYMÉTRIQUE

Jérémie Klingler – Université Lyon 1

Recasages: 101, 103, 104, 105, 108 (et 190 si c'est la dèche)

Référence : Pour la démonstration du lemme : *Cours d'algèbre*, Perrin (page 31) Pour le reste : *Oraux X-ENS, Algèbre 1*, Francinou, Gianella, Nicolas (page 74)

Remarques préliminaires. Je préfère la version de FGN à celle de Perrin qui calcule le cardinal du centralisateur d'une permutation sans en donner la démonstration.

Attention toutefois, la version de FGN est rédigée dans un style « annale de concours » et est donc très détaillée. Il faut donc sélectionner les morceaux que l'on souhaite détailler lors du développement.

Les points en italique sont à énoncer à l'oral.

Soit G un groupe. Un automorphisme φ de G est dit **intérieur** s'il existe $g \in G$ tel que pour tout $x \in G$, $\varphi(x) = gxg^{-1}$.

Théorème. Soit $n \in \mathbb{N}^*$. Si $n \neq 6$, alors les automorphismes du groupe \mathcal{S}_n sont exactement les automorphismes intérieurs.

La démonstration se fait en deux temps. On commence par montrer qu'un automorphisme de S_n qui envoie les transpositions sur les transpositions est intérieur. Puis, on montre que s'il existe un automorphisme de S_n qui ne conserve pas les transpositions, alors n = 6.

Lemme. Soit $\varphi \in \operatorname{Aut}(\mathcal{S}_n)$ qui envoie les transpositions sur les transpositions. Alors φ est intérieur.

Démonstration du lemme. Soit φ un tel automorphisme.

Commençons par rappeler que S_n est engendré par la famille de transpositions $(\tau_i)_{2 \leq i \leq n}$, où $\tau_i := (1 i)$.

Soit $2 \le i \le n$. Par hypothèse, $\varphi(\tau_i)$ est une transposition.

Si $i \neq j$, τ_i et τ_j ne commutent pas donc $\varphi(\tau_i)$ et $\varphi(\tau_j)$ non plus. Ainsi, leurs supports ne sont pas disjoints. Il existe donc $\alpha_1 \in \{1, \ldots, n\}$ qui appartient à l'instersection des supports des $\varphi(\tau_i)$.

Pour tout $2 \le i \le n$, on peut alors noter $\varphi(\tau_i) = (\alpha_1 \alpha_i)$ avec $\alpha_i \in \{1, \ldots, n\}$. En outre, comme φ est bijective (donc injective), on en déduit que les $(\alpha_i)_{1 \le i \le n}$ sont distincts.²

On peut alors définir la permutation suivante :

$$\alpha := \begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} \in \mathcal{S}_n.$$

Remarquons alors que pour tout $2 \le k \le n$, $i_{\alpha}(\tau_k) := \alpha \tau_k \alpha^{-1} = (\alpha_1 \alpha_k) = \varphi(\tau_k)$.

Ainsi, les automorphismes φ et i_{α} coïncident sur les $(\tau_k)_{2 \leq k \leq n}$ qui constituent une partie génératrice de S_n . Ainsi, ils coïncident sur S_n et donc $\varphi = i_{\alpha}$.

Démonstration du théorème. Soit $\varphi \in \operatorname{Aut}(\mathcal{S}_n)$. On veut montrer que φ envoie les transpositions sur les transpositions. Considérons donc $\tau \in \mathcal{S}_n$.

Comme τ est d'ordre 2, on en déduit que $\varphi(\tau)$ est également d'ordre 2. Ainsi, $\varphi(\tau)$ se décompose en produit de k transpositions à supports disjoints.

Notons T l'ensemble des transpositions dans S_n et T_k l'ensemble des produits de k transpositions à supports disjoints dans S_n .

^{1.} à savoir détailler lors d'une éventuelle question

^{2.} si $\alpha_i = \alpha_1$, alors $\tau_i \in \text{Ker } \varphi$ qui n'est donc pas trivial. Si $\alpha_i = \alpha_j$, alors $\varphi(\tau_i) = \varphi(\tau_j)$ et φ est non injectif.

On rappelle que T et T_k sont stables par conjugaison dans \mathcal{S}_n et sont en fait des classes de conjugaison dans \mathcal{S}_n . Montrons alors que $\varphi(T) = T_k$.

Considérons $\tau' \in T$. Alors il existe $\sigma \in \mathcal{S}_n$ telle que $\tau' = \sigma \tau \sigma^{-1}$ et donc $\varphi(\tau') = \varphi(\sigma \tau \sigma^{-1}) = \varphi(\sigma)\varphi(\tau)\varphi(\sigma)^{-1} \in T_k$ car T_k est stable par conjugaison.

Réciproquement, considérons $\tau' = \sigma \varphi(\tau) \sigma^{-1} \in T_k$. Alors

$$\tau' = \varphi(\varphi^{-1}(\sigma)\tau\varphi^{-1}(\sigma^{-1})) = \varphi(\varphi^{-1}(\sigma)\tau(\varphi^{-1}(\sigma))^{-1}).$$

On a $\varphi^{-1}(\sigma)\tau(\varphi^{-1}(\sigma))^{-1} \in T$ car T est stable par conjugation donc $\tau' \in \varphi(T)$.

Comme φ est bijective, on en déduit que $|T| = |T_k|$. Calculons alors le cardinal de T_k . On a :

$$|T_k| = \frac{\binom{n}{2}\binom{n-2}{2}\cdots\binom{n-2k+2}{2}}{k!},$$

car il faut choisir successivement les supports des k transpositions, puis diviser par k! car on peut écrire le produit de ces transpositions dans l'ordre que l'on souhaite, étant donné qu'elles commutent toutes entre elles (car elles sont à supports disjoints).

On calcule alors:

$$|T_k| = \frac{n!(n-2)!\cdots(n-2k+2)!}{2^k(n-2)!(n-4)!\cdots(n-2k)!} \cdot \frac{1}{k!} = \frac{n!}{2^k k!(n-2k)!} = \binom{n-k}{k} \frac{n(n-1)\cdots(n-k+1)}{2^k}$$

En outre,
$$|T| = \binom{n}{2} = \frac{n(n-1)}{2}$$
.

Si k=1, on en déduit que $\varphi(T)=T$ et donc que φ envoie les transpositions sur les transpositions et est donc un automorphisme intérieur, en vertu du lemme.

Si k=2, alors $|T_k|=|T|$ conduit à

$$\binom{n-2}{2}\frac{1}{2} = 1 \text{ donc } (n-2)(n-3) = 4,$$

ce qui est impossible car le produit de deux entiers consécutifs ne peut être égal à 4.

Supposons alors $k \geq 3$. Alors $|T_k| = |T|$ conduit à

$$\binom{n-k}{k} \frac{(n-2)\cdots(n-k+1)}{2^{k-1}} = 1 \text{ donc } \binom{n-k}{k} (n-2)\cdots(n-k+1) = 2^{k-1},$$

ce qui n'est possible que si -k+1=2 car sinon le produit de gauche comporterait un nombre impair.

Il en découle donc que k=3 et donc $\binom{n-3}{3}(n-2)=4$, ce qui conduit à (n-2)(n-3)(n-4)(n-5)=24 et donc n=6.

Par contraposée, on en déduit donc que si $n \neq 6$, alors $\varphi(T) = T$ et φ est un automorphisme intérieur d'après le lemme.

^{3.} à savoir détailler lors des questions

^{4.} Pour T, on a : $(xy) = \sigma(ab)\sigma^{-1}$ avec $\sigma = (ax)(by)$. Pour T_k , on a $\sigma \prod (x_iy_i)\sigma^{-1} = \prod \sigma(x_iy_i)\sigma^{-1} = \prod (\sigma(x_i)\sigma(y_i))$. Si l'on veut montrer que c'est égal à $\prod (a_ib_i)$, il suffit de construire $\sigma \in \mathcal{S}_n$ qui envoie les (x_i) sur les (a_i) et les (y_i) sur les (b_i) , ce qui est permis car les $(x_1, \ldots, x_k, y_1, \ldots, y_k)$ sont supposés distincts, tout comme les $(a_1, \ldots, a_k, b_1, \ldots, b_k)$.

^{5.} k=3 impose de pouvoir définir le produit de 3 transpositions à supports disjoints dans S_n , ce qui entraı̂ne que $n \ge 6$. En outre, la suite définie pour $n \ge 6$ par $u_n = (n-2)(n-3)(n-4)(n-5)$ est strictement croissante. Ainsi, $u_n = 24$ ssi n=6.